US009141437B2

a2z United States Patent (10) Patent No.: US 9,141,437 B2
Krishnamurthy (45) Date of Patent: Sep. 22, 2015
(54) METHODS AND SYSTEMS FOR MIGRATING 20027/60024%388 izl 3%882 g()ldjd;th
enworthy
NETWORK RESOURCES TO IMPROVE 2005/0223005 Al 10/2005 Shultz et al.
NETWORK UTILIZATION 2006/0112297 Al 5/2006 Davidson
2006/0136926 Al 6/2006 Goldick
(75) Inventor: Rajaram B. Krishnamurthy, 2006/0212573 Al 9/2006 Loaiza et al.
Wappingers Falls, NY (US) 2008/0126726 Al* 52008 Cometto etal. 711/163
(73) Assignee: International Business Machines FOREIGN PATENT DOCUMENTS
Corporation, Armonk, NY (US) EP 0755004 Bl 10/2001
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Cisco Systerms. Tne. . ervite Dist for [BM Enterorise Envi
18C0 »ystems, Inc. Connectuvity Distances 10r nterprise Envi-
U.S.C. 154(b) by 1228 days. ronments Using The Cisco ONS 15500 Series Wavelength Division
. Multiplexers [Online], 2004 [retrieved on Oct. 25, 2009]. Retrieved
(21) Appl. No.: 12/021,341 from the Internet:<URL: http://www.cisco.mn/en/US/prod/collat-
(22) Filed: Jan. 29, 2008 eral/optical/ps2011/prod_white__paper0900aecd8014¢967.pdf>.*
. s * cited by examiner
(65) Prior Publication Data
US 2009/0193122 Al Jul. 30, 2009 Primary Examiner — Daniel C Murray
Assistant Examiner — Adam Cooney
(51) Int.CL (74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
GO6F 15/173 (2006.01) Presser, P.C.; Steven Chiu, Esq.
GO6F 9/50 (2006.01)
GO6F 9/52 (2006.01) (57) ABSTRACT
(52) ICJPSC Cl. GOGF 9/5088 (2013.01): GOGF 9/526 A method and system are disclosed for migrating network
""""""" (01); 201301 resources to improve network utilization, for use in a multi-
. . . (D) node network wherein nodes of the network share network
(58) Field of Classification Search resources. The method comprises the steps of identifying a
CPC GOGF 9/50; GOGF 9/5088; GOGF 9/5005 group of nodes that share one of the network resources, and
USPC R SIS 709/226 identifying one of the nodes satisfying a specified condition
See application file for complete search history. based on at least one defined access latency metric. The
56 Ref Cited shared resource is moved to the identified one of the nodes to
(56) eferences Cite reduce overall access latency to access the shared resource by
U.S. PATENT DOCUMENTS se}id group of nodes. One embodiment gf the inV.entior.l pro-
vides a method and system to synchronize tasks in a distrib-
5,339,427 A 8/1994 Elko et al. uted computation using network attached devices (NADs). A
giggg‘;? gl 1;; éggg ?GHSOH 3} al. | second embodiment of the invention provides a method and
s s agannathan et al. .)
6,539,446 Bl 32003 Chon system to reduce lock latency and n.et.work traﬂic by migrat
6.615373 B2 9/2003 Elko etal. ing lock managers to coupling facility locations closest to
6,950,853 B2 9/2005 Garcia-Luna-Aceves et al. nodes seeking resource access.
6,970,872 B1* 11/2005 Chandrasekaranetal. 1/1
6,976,066 B1 12/2005 Mouhanna et al. 20 Claims, 8 Drawing Sheets
re s T T Y " " === =—=—-- =
! SHARED RESOURCES 202 !
[[
I | i i i it - :
| i[R11] [Rez] [rea]} |[Ren] [Rez] [Rea]] |[Ret] [Ree] [Raa], |
lomomopmoo? boooopoood boooopooo
[|]
NODE NODE NODE
@ M1 @ M2 ’ v3
306— soe—] 306j
304—7 304—7 304——]
‘ LOCAL LOCK | ‘ LOCAL LOCK | ‘ LOCAL LOCK |
MANAGER MANAGER MANAGER

U.S. Patent Sep. 22, 2015 Sheet 1 of 8 US 9,141,437 B2

U.S. Patent Sep. 22, 2015 Sheet 2 of 8 US 9,141,437 B2

170
(——172e
110 UP
I/O DOWN
r— T T T T] (
ﬂ | 164a 168a | 1rat
170 | e 6 |
| |
| CPU |
: 165 SWITCH :
b
: 1i§b 168c - :
| e |
| CPU |
| |
172a | ' 172¢
| 168d 168f |
kw L N R N I A I B F/
NORTH EAST

| | | k\ WEST

172b 172d

FIG. 2

U.S. Patent Sep. 22, 2015 Sheet 3 of 8 US 9,141,437 B2
r—r-—--""""""""""-"""-"-""-"-"-"="-"="-—"="-—"=-—-—"=-—"-—""-—"-—""=-"-—""=-—"-—""-"—"-"-—""=-""="—""=""—"—""=— -
| SHARED RESOURCES 302 |
| |
[-1 == -1 == - |
: : rR11] [rR12] [R13 : : r21| [R22] [R23 : R31| [R32] [R33 : :
|l - _ _ _ —_ _ _ _ | | | 1|

NODE NODE NODE
@ M1 M2 M3
306 306 306
))]
304 —7 304 ——7 304)
LOCAL LOCK LOCAL LOCK LOCAL LOCK
MANAGER MANAGER MANAGER

FIG. 3

U.S. Patent

(402a

Sep. 22, 2015

Sheet 4 of 8

V402b

US 9,141,437 B2

g— 402¢c

RESOURCE ID

HOME SWITCH
ADDRESS/ID

MOBILE SWITCH
ADDRESS/ID

402 =
CLIENT RESOURCE INDIRECTION TABLE
f 404a f 404b r 404c f 404d
RESOURCE ID | OWNER | LOCK MANAGER | LINKED LIST OF

LOCATION

WAITING NODES

402\

HOME NAD RESOURCE MAPPING TABLE

FIG. 4

US 9,141,437 B2

Sheet 5 of 8

Sep. 22, 2015

U.S. Patent

G Old

LL=p+E+p=
yd+€d+2d

0l=E+¢+5=
vd+Ed+id

HOLIMS 190N

El=p+1+9=
vd+€d+id

ld

€1=G+E+G=
vd+€d+id

€L=G+C+0=

A HOLIMS JWOH

JNOH = ¥3NMO
L

SUO01 AHOLVHOIN

34dON H3INMO

U.S. Patent Sep. 22, 2015 Sheet 6 of 8 US 9,141,437 B2

COMPILE-TIME - PROGRAMMER OR COMPILER SPECIFIED MIGRATION

GrasD

NODES IN SYSTEM EXECUTE
INSTRUCTIONS AND
ENCOUNTER LOCK MANAGER |~ 602
MIGRATE FUNCTION CALL.
USE TABLE 402.

603

IS LOCK
MANAGER AT
COMPILE-TIME DEFINED
LOCATION ?

YES NO

Y
Y
ISSUE REQUEST AT
ISSUE REQUESTS TO raN HOME NAD TO MIGRATE
LOCK MANAGER AT 604 LOCK MANAGER TO
CURRENT LOCATION 605" COMPILE-TIME
SPECIFIED LOCATION

(518> D

FIG. 6(a)

U.S. Patent Sep. 22, 2015 Sheet 7 of 8 US 9,141,437 B2

RUN-TIME - LOCALITY DETECTION BY NAD

SR

NODES IN SYSTEM EXECUTE
INSTRUCTIONS AND ENCOUNTER L~ 544
"LOCK" CALL. ISSUE REQUEST
- TO LOCK MANAGER AT -
RESOURCE HOME LOCATION
USING CLIENT RESOURCE
INDIRECTION TABLE 402.

Y
LOCK MANAGER ON NAD LOGS
REQUESTS IN RESOURCE [~ 612
MAPPING TABLE 404

613

NAD
COMPUTES:
IS LOCALITY
OBSERVED?

Y Y
HOME NAD CONTINUES HOME NAD LOCK MANAGER
PROCESSING LOCK INSTANCE MIGRATES TO
REQUEST WITHOUT NEW LOCATION.
MIGRATION REQUESTORS INFORMED.
L’ 614 L 615

FIG. 6(b)

US 9,141,437 B2

Sheet 8 of 8

Sep. 22, 2015

U.S. Patent

1 "Old
S31IONV SO HILINIOVLIVA Z

9lL
MNIT AHLNNOD - SSOHD

20.
g-40
0L S1S3ANDIY MO0 € d3LS g-40 Ol / 90/
N V-40 WOY4 avIyHL \ SIANIHOVIN Z W3LSAS
YIOVNVIN ¥OOT3IAON
2d3ls ,
/ Z/
pd 002

- V-40 O1 d3NILS3d
JHVY S1S3INDIH MOOT 1V ‘L d31S

oLL ALIMTIOVA ONI'IdNOD - 40

voZ SANIHOVIN Z W31SAS

MHOA MAN H3INFOVLIVA Z

SN3LSAS d3SHIdSIA ATTIVOIHAVHO OO

US 9,141,437 B2

1
METHODS AND SYSTEMS FOR MIGRATING
NETWORK RESOURCES TO IMPROVE
NETWORK UTILIZATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention generally relates to computer networks, and
more specifically, the invention relates to migrating network
resources to improve network utilization. Even more specifi-
cally, the preferred embodiment of the invention relates to
moving a compute resource, such as a lock manager, around
the network with the intent, based on observed or predicted
utilization, of reducing or minimizing the amount of network
traffic consumed by accessing this resource.

2. Background Art

Multiple processes running on multi-processing systems
may access “shared resources” Some of these shared
resources may be accessed by only one process at a time,
while others may be accessed concurrently by multiple pro-
cesses. Consequently, “synchronization mechanisms” have
been developed to control access by multiple processes to
shared resources. The synchronization mechanism grants
locks to processes. Locks grant to holders of the locks the
right to access a particular resource in a particular way. Once
a lock is granted to a process, the process holds or owns the
lock until the lock is relinquished, revoked, or otherwise
terminated. Locks are represented by data structures such as
semaphores, read/write latches, and condition variables.
There are many types of locks. Some types of locks allow
shared resources to be shared by many processes concur-
rently (e.g. shared read lock), while other types of locks
prevent any type of lock from being granted on the same
resource (exclusive write lock).

The entity responsible for granting locks is referred to
herein as a lock manager. In a single node multi-processing
system, a lock manager is typically a software component
executed and invoked by processes on the node accessing a
shared resource. In contrast to a single node system, a multi-
node system is comprised of a network of computing devices
or nodes. Each node may be a multi-processing system, and
may have a local lock manager to control access to resources
of'the node that may be shared with other nodes in the system.
In these multi-node systems or networks, many nodes may
access many other nodes for access to shared resources. Bur-
dening compute nodes for low latency lock access can con-
siderably affect network performance.

SUMMARY OF THE INVENTION

An object of this invention is to migrate network resources,
in a multi-node computer network, to improve network utili-
zation.

Another object of the present invention is to move a com-
pute resource, such as a lock manager instance, around a
computer network in order to reduce or minimize the amount
of network traffic consumed by accessing this resource.

A further object of an embodiment of the invention is to
synchronize tasks in a distributed computation using network
attached devices.

An object of an embodiment of the invention is to reduce
lock latency and network traffic, in a distributed, multi-node
computer network, by migrating lock manager instances to
coupling facility locations closest to the nodes seeking
resource access.

These and other objectives are attained with a method and
system for migrating network resources to improve network

10

15

20

25

30

35

40

45

50

55

60

65

2

utilization. The method and system are for use in a multi-node
network wherein nodes of the network share network
resources. The method comprises the steps of identifying a
group of nodes that share one of the network resources, and
identifying one of the nodes satisfying a specified condition
based on at least one defined access latency metric. An
instance of the shared resource is moved to the identified one
of the nodes to reduce overall access latency to access the
shared resource by said group of nodes.

It may be noted that nodes are described herein as perform-
ing actions and as being the object of actions. However, this is
just a convenient way of expressing that one or more pro-
cesses on a node are performing an action or is the object of an
action. For example, a node accessing a shared resource or
granting, holding, or being issued a lock is just a convenient
way of expressing that a process on the node is accessing a
shared resource or granting, holding, or being issued a lock.

One embodiment of the invention provides a method and
system to synchronize tasks in a distributed computation
using network-attached devices (NADs). Each NAD has a
processor, memory, storage and IP network link. The NADs
are used to offload lock access and grant to a simple device
externally attached to a switch or router node. In a multi-node
computer network, there is usually temporal locality in
resource usage, and for example, gang scheduled processes
demonstrate such locality. Resources are usually shared
among tasks, and these tasks might be distributed across a
machine cluster. As an example, tasks T1, T2, T3, T4 on
machines M1, M2, M3 and M4 access database records R1,
R2, R3 and R4. T1 acquires a lock on R1, then R2, R3 and
finally R4. T2, T3, T4 also compete for access to R1, R2, R3
and R4. A network-attached device can be used as a lock
server or manager to offload lock request from the server
machine. In one embodiment of the invention, a network
device is used to offload lock management tasks from the
resource owner compute node. In addition, if temporal local-
ity in resource usage is detected, a lock manager thread may
be migrated to a NAD location that is equidistant from all
participating compute nodes. A single lock manager thread or
instance to manage the required resource is only migrated;
other resource locks are still managed at the original lock
manager. This allows load distribution and can lower lock
request and resource acquisition latency.

A second embodiment of the invention provides a method
and system to reduce lock latency and network traffic by
migrating lock managers to coupling facility locations closest
to nodes seeking resource access. A multiple processing
architecture may comprise a plurality of distributed computer
systems and one or more coupling facilities. Each of the
computer systems is connected to one of the coupling facili-
ties, which receive data from and transmit data to the com-
puter systems.

For example, one group of computer systems may be
located in a datacenter in New York, and a second group of
computer systems may be located in a datacenter in Los
Angeles. The New York systems may be connected to a first
coupling facility, the Los Angeles computer systems may be
connected to a second coupling facility, and the two coupling
facilities may be connected together to transmit data and
information between the New York computer systems and the
Los Angeles systems.

If the computer systems in New York need to access a
resource in Los Angeles, the New York systems seek the lock
stored in the Los Angeles coupling facility. This may cause
excessive lock latency and higher network link bandwidth. To
address this, a thread in the lock manager in the Los Angeles
datacenter is migrated to the coupling facility in the New York

US 9,141,437 B2

3

datacenter. The computer systems in New York can then
access the lock manager in the New York coupling facility.
This reduces lock latency and reduces bandwidth over the
cross-country link and in the Los Angeles datacenter. Such
migration is prudent because none of the Los Angeles sys-
tems seek access to the resource in Los Angeles. All the
systems that seek access to the resource in Los Angeles are in
New York.

The present invention is well suited for fine-grained,
latency sensitive environments. The release consistency and
coherence can be used to preserve latency gains provided by
this invention.

The invention relieves burden from the resource manager
node. The invention is particularly advantageous when used
in a computer system having large node counts and lots of
small messages for lock requests. The invention may be used
to prevent livelock. Databases like DB2 support row-level
locks and systems that host such databases can be subject to a
large number of small messages.

Migration of the appropriate instance of the locking func-
tion reduces latency to lock, reduces network traffic, and
reduces the load on the owner suited.

Migratory locks are useful, for example, when gang sched-
uled processes share resources, and when there is temporal
and spatial locality in resource use. Temporal and spatial
locality in resource use may exist when, for instance,
resources A, B, C and D are used in a round-robin fashion by
processes P1, P2, P3 and P4. Migratory locks are also useful
when two processes ping-pong a single semaphore, and when
live processes share resource A and resource B.

The preferred embodiments of the invention reduce switch
hops to the lock resource manager. This provides many ben-
efits when congested links are present as congested links add
to latency. Large diameter networks are especially benefited
by this invention.

Further benefits and advantages of this invention will
become apparent from a consideration of the following
detailed description, given with reference to the accompany-
ing drawings, which specify and show preferred embodi-
ments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example high performance computing
(HPC) system in which the present invention may be prac-
ticed.

FIG. 2 shows an example node of the HPC system of FIG.
1.

FIG. 3 illustrates three nodes and a set of shared resources
of the HPC system of FIG. 1.

FIG. 4 shows a client resource indirection table and a home
NAD resource mapping table that are used in the preferred
embodiment of the invention.

FIG. 5 illustrates a procedure for selecting the location to
where a lock manager is moved.

FIG. 6a shows a flowchart for compile-time specification
of resource migration.

FIG. 6b shows a flowchart for run-time detection of
resource migration.

FIG. 7 depicts a multiple processing architecture in which
a lock manager thread is migrated from one area to another
area.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG.1 is ablock diagram illustrating a HPC system 100 for
executing software applications and processes, for example

20

40

45

50

65

4

an atmospheric, weather, or crash simulation, using HPC
techniques. System 100 provides users with HPC functional-
ity dynamically allocated among various computing nodes
115 with [/O performance substantially similar to the pro-
cessing performance. Generally, these nodes 115 are easily
scalable because of, among other things, this increased 1/O
performance and reduced fabric latency.

HPC system 100 is a distributed client/server system that
allows users (such as scientists and engineers) to submit jobs
150 for processing on an HPC server 102. For example,
system 100 may include HPC server 102 that is connected,
through network 106, to one or more administration worksta-
tions or local clients 120. But system 100 may be a standalone
computing environment or any other suitable environment. In
short, system 100 may be any HPC computing environment
that includes highly scalable nodes 115 and allows the user to
submit jobs 150, dynamically allocates scaleable nodes 115
for job 150, and automatically executes job 150 using the
allocated nodes 115. Job 150 may be any batch or online job
operable to be processed using HPC techniques and submit-
ted by any apt user. For example, job 150 may be a request for
a simulation, a model, or for any other high-performance
requirement. Job 150 may also be a request to run a data
center application, such as a clustered database, an online
transaction processing system, or a clustered application
server. The term “dynamically,” as used herein, generally
means that certain processing is determined, at least in part, at
run-time based on one or more variables. The term “automati-
cally,” as used herein, generally means that the appropriate
processing is substantially performed by at least part of HPC
system 100. It should be understood that “automatically”
further contemplates any suitable user or administrator inter-
action with system 100 without departing from the scope of
this invention.

HPC server 102 may comprise any local or remote com-
puter operableto process job 150 using a plurality of balanced
nodes 115 and cluster management engine 130. Generally,
HPC server 102 comprises a distributed computer such as a
blade server or other distributed server. However the configu-
ration, server 102 includes a plurality of nodes 115. Nodes
115 comprise any computer or processing device such as, for
example, blades, general-purpose personal computers (PC),
Macintoshes, workstations, Unix-based computers, or any
other suitable devices. Generally, FIG. 1 provides merely one
example of computers that may be used with the invention.
For example, although FIG. 1 illustrates one server 102 that
may be used with the invention, system 100 can be imple-
mented using computers other than servers, as well as a server
pool. The present invention may be used with computers
other than general-purpose computers as well as computers
without conventional operating systems (OSs). As used
herein, the term “computer” is intended to encompass a per-
sonal computer, workstation, network computer, or any other
suitable processing device. HPC server 102, or the compo-
nent nodes 115, may be adapted to execute any OS including
Linux, UNIX, Windows Server, or any other suitable OS.
According to one embodiment, HPC server 102 may also
include or be communicably coupled with a remote web
server. Therefore, server 102 may comprise any computer
with software and/or hardware in any combination suitable to
dynamically allocate nodes 115 to process HPC job 150.

At a high level, HPC server 102 includes a management
node 105, a grid 110 comprising a plurality of nodes 115, and
cluster management engine 130. More specifically, server
102 may include a plurality of blades (nodes 115) with some
or all of the following components: i) dual-processors; ii)
large, high bandwidth memory; iii) dual host channel adapt-

US 9,141,437 B2

5
ers (HCAs); iv) integrated fabric switching; v) FPGA sup-
port; and vi) redundant power inputs or N+1 power supplies.
These various components allow for failures to be confined to
the node level. But it will be understood that HPC server 102
and nodes 115 may not include all of these components.

Management node 105 comprises at least one blade sub-
stantially dedicated to managing or assisting an administra-
tor. For example, management node 105 may comprise two
blades, with one of the two blades being redundant (such as an
active/passive configuration). In one embodiment, manage-
ment node 105 may be the same type of blade or computing
device as HPC nodes 115. But, management node 105 may be
any node, including any number of circuits and configured in
any suitable fashion, so long as it remains operable to at least
partially manage grid 110. Often, management node 105 is
physically or logically separated from the plurality of HPC
nodes 115, jointly represented in grid 110. In the illustrated
embodiment, management node 105 may be communicably
coupledto grid 110 via link 108. Reference to a “link” encom-
passes any appropriate communication conduit implement-
ing any appropriate communications protocol. As an example
and not by way of limitation, a link may include one or more
wires in one or more circuit boards, one or more internal or
external buses, one or more local area networks (LLANs), one
or more metropolitan area networks (MANs), one or more
wide area networks (WANs), one or more portions of the
Internet, or a combination of two or more such links, where
appropriate. In one embodiment, link 108 provides Gigabit or
10 Gigabit Ethernet communications between management
node 105 and grid 110.

Grid 110 is a group of nodes 115 interconnected for
increased processing power. Typically, grid 110 is a 3D Torus,
but it may be a mesh, a hypercube, or any other shape or
configuration without departing from the scope of this inven-
tion. Reference to a “torus” may encompass all or a portion of
grid 110, where appropriate, and vice versa, where appropri-
ate. The links between nodes 115 in grid 110 may be serial or
parallel analog links, digital links, or any other type of link
that can convey electrical or electromagnetic signals such as,
for example, fiber or copper. Each node 115 is configured
with an integrated switch. This allows node 115 to more
easily be the basic construct for the 3D Torus and helps
minimize XYZ distances between other nodes 115. Further,
this may make copper wiring work in larger systems at up to
Gigabit rates with, in some embodiments, the longest cable
being less than 5 meters. Node 115 may be generally opti-
mized for nearest-neighbor communications and increased
1/0O bandwidth.

Each node 115 may include a cluster agent 132 communi-
cably coupled with cluster management engine 130. Gener-
ally, agent 132 receives requests or commands from manage-
ment node 105 and/or cluster management engine 130. Agent
132 could include any hardware, software, firmware, or com-
bination thereof operable to determine the physical status of
node 115 and communicate the processed data, such as
through a “heartbeat,” to management node 105. In another
embodiment, management node 105 may periodically poll
agent 132 to determine the status of the associated node 115.
Agent 132 may be written in any appropriate computer lan-
guage such as, for example, C, C++, Assembler, Java, Visual
Basic, and others or any combination thereof so long as it
remains compatible with at least a portion of cluster manage-
ment engine 130.

Cluster management engine 130 could include any hard-
ware, software, firmware, or combination thereof operable to
dynamically allocate and manage nodes 115 and execute job
150 using nodes 115. For example, cluster management

10

15

20

25

30

35

40

45

50

55

60

65

6

engine 130 may be written or described in any appropriate
computer language including C, C++, Java, Visual Basic,
assembler, any suitable version of 4GL, and others or any
combination thereof. It will be understood that while cluster
management engine 130 is illustrated in FIG. 1 as a single
multi-tasked module, the features and functionality per-
formed by this engine may be performed by multiple modules
such as, for example, a physical layer module, a virtual layer
module, a job scheduler, and a presentation engine. Further,
while illustrated as external to management node 105, man-
agement node 105 typically executes one or more processes
associated with cluster management engine 130 and may
store cluster management engine 130. Moreover, cluster
management engine 130 may be a child or sub-module of
another software module without departing from the scope of
this invention. Therefore, cluster management engine 130
comprises one or more software modules operable to intelli-
gently manage nodes 115 and jobs 150. In particular embodi-
ments, cluster management engine includes a scheduler for
allocating nodes 115 to jobs 150. The Scheduler may use a
scheduling algorithm to allocate nodes 115 to jobs 150.

Server 102 may include interface 104 for communicating
with other computer systems, such as client 120, over net-
work 106 in a client-server or other distributed environment.
In certain embodiments, server 102 receives jobs 150 or job
policies from network 106 for storage in disk farm 140. Disk
farm 140 may also be attached directly to the computational
array using the same wideband interfaces that interconnects
the nodes. Generally, interface 104 comprises logic encoded
in software and/or hardware in a suitable combination and
operable to communicate with network 106. More specifi-
cally, interface 104 may comprise software supporting one or
more communications protocols associated with communi-
cations network 106 or hardware operable to communicate
physical signals.

Network 106 facilitates wireless or wireline communica-
tion between computer server 102 and any other computer,
such as clients 120. Indeed, while illustrated as residing
between server 102 and client 120, network 106 may also
reside between various nodes 115 without departing from the
scope of the invention. In general, network 106 encompasses
any network, networks, or sub-network operable to facilitate
communications between various computing components.
Network 106 may communicate, for example, Internet Pro-
tocol (IP) packets, Frame Relay frames, Asynchronous Trans-
fer Mode (ATM) cells, voice, video, data, and other suitable
information between network addresses. Network 106 may
include one or more local area networks (LANs), radio access
networks (RANs), metropolitan area networks (MANs), wide
area networks (WANSs), all or a portion of the global computer
network known as the Internet, and/or any other communica-
tion system or systems at one or more locations.

In general, disk farm 140 is any memory, database or
storage area network (SAN) for storing jobs 150, profiles,
boot images, or other HPC information. According to the
illustrated embodiment, disk farm 140 includes one or more
storage clients 142. Disk farm 140 may process and route data
packets according to any of a Number of communication
protocols, for example, InfiniBand (IB), Gigabit Ethernet
(GE), or FibreChannel (FC). Data packets are typically used
to transport data within disk farm 140. A data packet may
include a header that has a source identifier and a destination
identifier. The source identifier, for example a source address,
identifies the transmitter of information, and the destination
identifier, for example a destination address, identifies the
recipient of the information.

US 9,141,437 B2

7

Client 120 is any device operable to present the user with a
job submission screen or administration via a graphical user
interface (GUI) 126. At a high level, illustrated client 120
includes at least GUI 126 and comprises an electronic com-
puting device operable to receive, transmit, process and store
any appropriate data associated with system 100. It will be
understood that there may be any Number of clients 120
communicably coupled to server 102. Further, “client 120”
and “user of client 120” may be used interchangeably as
appropriate without departing from the scope of this disclo-
sure. Moreover, for ease of illustration, each client is
described in terms of being used by one user. But this disclo-
sure contemplates that many users may use one computer to
communicate jobs 150 using the same GUI 126.

As used herein, client 120 is intended to encompass a
personal computer, touch screen terminal, workstation, net-
work computer, kiosk, wireless data port, cell phone, personal
data assistant (PDA), one or more processors within these or
other devices, or any other suitable processing device. For
example, client 120 may comprise a computer that includes
an input device, such as a keypad, touch screen, mouse, or
other device that can accept information, and an output device
that conveys information associated with the operation of
server 102 or clients 120, including digital data, visual infor-
mation, or GUI 126. Both the input device and output device
may include fixed or removable storage media such as a
magnetic computer disk, CD-ROM, or other suitable media to
both receive input from and provide output to users of clients
120 through the administration and job submission display,
namely GUI 126.

GUI 126 comprises a graphical user interface operable to
allow 1) the user of client 120 to interface with system 100 to
submit one or more jobs 150; and/or ii) the system (or net-
work) administrator using client 120 to interface with system
100 for any suitable supervisory purpose. Generally, GUI126
provides the user of client 120 with an efficient and user-
friendly presentation of data provided by HPC system 100.
GUI 126 may comprise a plurality of customizable frames or
views having interactive fields, pull-down lists, and buttons
operated by the user. In one embodiment, GUI 126 presents a
job submission display that presents the various job param-
eter fields and receives commands from the user of client 120
via one of the input devices. GUI 126 may, alternatively or in
combination, present the physical and logical status of nodes
115 to the system administrator, and receive various com-
mands from the administrator. Administrator commands may
include marking nodes as (un)available, shutting down nodes
for maintenance, rebooting nodes, or any other suitable com-
mand. Moreover, it should be understood that the term graphi-
cal user interface may be used in the singular or in the plural
to describe one or more graphical user interfaces and each of
the displays of a particular graphical user interface. There-
fore, GUI 126 contemplates any graphical user interface, such
as a generic web browser, that processes information in sys-
tem 100 and efficiently presents the results to the user. Server
102 can accept data from client 120 via the web browser (e.g.,
Microsoft Internet Explorer or Netscape Navigator) and
return the appropriate HTML or XML responses using net-
work 106.

In one aspect of operation, HPC server 102 is first initial-
ized or booted. During this process, cluster management
engine 130 determines the existence, state, location, and/or
other characteristics of nodes 115 in grid 110. As described
above, this may be based on a “heartbeat” communicated
upon each node’s initialization or upon near immediate poll-
ing by management node 105. Next, cluster management
engine 130 may dynamically allocate various portions of grid

30

40

45

55

8

110 to one or more virtual clusters based on, for example,
predetermined policies. In one embodiment, cluster manage-
ment engine 130 continuously monitors nodes 115 for pos-
sible failure and, upon determining that one of the nodes 115
failed, effectively managing the failure using any of a variety
of'recovery techniques. Cluster management engine 130 may
also manage and provide a unique execution environment for
each allocated node of virtual cluster. The execution environ-
ment may be comprised of the hostname, IP address, OS,
configured services, local and shared file systems, and a set of
installed applications and data. The cluster management
engine 130 may dynamically add or subtract nodes from each
virtual cluster according to associated policies and according
to inter-cluster policies, such as priority.

When auser logs on to client 120, he may be presented with
a job submission screen via GUI 126. Once the user has
entered the job parameters and submitted job 150, cluster
management engine 130 processes the job submission, the
related parameters, and any predetermined policies associ-
ated with job 150, the user, or the user group. Cluster man-
agement engine 130 then determines the appropriate virtual
cluster based, at least in part, on this information. Engine 130
then dynamically allocates a job space within virtual cluster
and executes job 150 across the allocated nodes 115 using
HPC techniques. Based, at least in part, on the increased I/O
performance, HPC server 102 may more quickly complete
processing ofjob 150. Upon completion, cluster management
engine communicates results 160 to the user.

FIG. 2 illustrates an example node (or blade) 115. A node
115 includes any computing device in any orientation for
processing all or a portion, such as a thread or process, of one
ormorejobs 150. As an example and not by way of limitation,
anode 115 may include a XEON motherboard, an OPTERON
motherboard, or other computing device. Node 115 has an
architecture providing an integrated fabric that enables dis-
tribution of switching functionality across nodes 115 in grid
110. In particular embodiments, distributing such function-
ality across nodes 115 in grid 110 may obviate centralized
switching in grid 110, which may in turn increase fault toler-
ance in grid 110 and enable parallel communication among
nodes 115 in grid 110.

As shown in FIG. 2, node 115 includes two CPUs 164 and
a switch (or fabric) 166. Alternatively, a node 115 may
include one CPU 164, where appropriate. Switch 166 may be
an integrated switch. In particular embodiments, switch 166
has multiple ports. Two ports on switch 166 may couple node
115 to management node 105 for input and output to and from
node 115. In addition, two ports on switch 166 may each
couple node 115 to another node 115 along an x axis of grid
110, two ports on switch 166 may each couple node 115 to
another node 115 along a y axis of grid 110, and two ports on
switch 166 may each couple node 115 to another node 115
along a z axis of grid 110 to facilitate implementation of a 3D
mesh, a 3D torus, or other topology in grid 110. Additional
ports on switch 166 may couple node 115 to other nodes 115
in grid 110 to facilitate implementation of a multidimensional
topology (such as a 4D torus or other nontraditional topology
including more than three dimensions) in grid 110. In par-
ticular embodiments, one or more ports on switch 166 may
couple node 115 to one or more other nodes 115 along one or
more diagonal axes of grid 110, which may reduce commu-
nication jumps or hops between node 115 and one or more
other node 115 relatively distant from node 115. As an
example and not by way of limitation, a port on switch 166
may couple node 115 to another node residing along a north-
easterly axis of grid 110 several 3D jumps away from node
115. In particular embodiments, switch 166 is an InfiniBand

US 9,141,437 B2

9

switch. Although a particular switch 166 is illustrated and
described, the present invention contemplates any suitable
switch 166.

Link 168a couples CPU 164a to switch 166. Link 1685
couples CPU 1644 to another switch 166 in another node 115.
Link 168c couples CPU 1645 to switch 166. Link 1684
couples CPU 1645 to another switch 166. Links 168¢ and
168/ couple switch 166 to two other CPUs 164 in other node
115. In particular embodiments, a link 168 includes an Infini-
Band 4.times. link capable of communicating approximately
one gigabyte per second in each direction. Although particu-
lar links 168 are illustrated and described, the present inven-
tion contemplates any suitable links 168. Links 170 are I/O
links to node 115. A link 170 also may include an InfiniBand
4 times. link capable of communicating approximately one
gigabyte per second in each direction. Although particular
links 170 are illustrated and described, the present invention
contemplates any suitable links 170. Links 172 couple switch
166 to other switches 166 in other nodes 115, as described
below. In particular embodiments, a link 172 includes an
InfiniBand 12.times.link capable of communicating approxi-
mately three gigabytes per second in each direction. Although
particular links 172 are illustrated and described, the present
invention contemplates any suitable links 172.

It may be noted that nodes are described herein as perform-
ing actions and as being the object of actions. However, this is
just a convenient way of expressing that one or more pro-
cesses on a node are performing an action or is the object ofan
action. For example, a node accessing a shared resource or
granting, holding, or being issued a lock is just a convenient
way of expressing that a process on the node is accessing a
shared resource or granting, holding, or being issued a lock.

Multiple processes running on system 100 access shared
resources. Some of these shared resources may be accessed
by only one process at a time, while others may be accessed
concurrently by multiple processes. Consequently, system
100 employs a synchronization mechanism to control access
by multiple processes to shared resources. The synchroniza-
tion mechanism grants locks to processes. Locks grant to
holders of the locks the right to access a particular resource in
a particular way. Once a lock is granted to a process, the
process holds or owns the lock until the lock is relinquished,
revoked, or otherwise terminated. Locks are represented by
data structures such as semaphores, read/write latches, and
condition variables. There are many types of locks. Some
types of locks allow shared resources to be shared by many
processes concurrently (e.g. shared read locks), while other
types of locks prevent any type of lock from being granted on
the same resource (exclusive write locks). The entity respon-
sible for granting locks is referred to herein as a lock manager.

FIG. 3 illustrates shared resources in system 100 of FIG. 1.
More specifically, FIG. 3 shows three nodes M1, M2 and M3
of system 100, and these nodes access shared resources 302.
As shown in FIG. 3, a lock manager 304 runs directly on the
network attached device (NAD) 306 to offload lock requests
from the compute processors.

Shared resources can be any kind of computer resource,
including volatile and non-volatile memory, input/output
peripheral devices, and data stored in non-volatile or volatile
memory (e.g. database data blocks, a file or portion thereof,
buffers in memory that hold such data). Access to shared
resources by nodes M1, M2, and M3 is controlled by a global
synchronization mechanism that includes a local lock man-
ager 304 on each of nodes M1, M2, and M3.

Each of nodes M1, M2, and M3 are assigned as masters to
a subset of shared resources 302. With the example illustrated
in FIG. 3, node M1 is the master of shared resources R11,

10

15

20

25

30

35

40

45

50

55

60

65

10
R12, and R13, node M2 is the master of shared resources R21,
R22, and R23, and node M3 is the master of shared resources
R31, R32, and R33. Shared resources to which access is
governed by a master node are referred to as being mastered
by that node.

In the operation of system 100, there is usually temporal
locality in resource usage, and for example, gang scheduled
processes demonstrate such locality. As an example, tasks T1,
T2, T3, T4 on nodes M1, M2 and M3 access resources R1,
R12, R21 and R31. T1 acquires, for example, a lock on R11,
then R12, R21 and finally R31. T2, T3, T4 also compete for
access to R11, R12, R21 and R31. A network-attached device
can be used as a lock manager to offload lock request from the
server machine. In one embodiment of the invention, a net-
work device is used to offload lock management tasks from
the resource owner compute node. In addition, if temporal
locality in resource usage is noticed, a lock manager thread
may be migrated to a NAD location that is equidistant from all
participating compute nodes. A single lock manager thread to
manage the required resource is only migrated, for other
resources, locks are still managed at the original lock man-
ager. This allows load distribution and can lower lock request
and resource acquisition latency.

Each NAD has a process, memory, storage and IP network
link. The NADs are used to oftload lock access and grant to a
simple device externally attached to a switch or router node.

In a preferred embodiment, an NAD is attached to all of the
nodes in the network. The NAD attached to the home switch
is responsible for local server activity. For resource accesses
that exhibit temporal locality, the lock access and grant activ-
ity is moved to a switch location NAD equidistant from all the
competing tasks so that the overall resource access latency is
lowered. This can lower execution time in a distributed com-
putation. The home switch can migrate a lock manager thread
for one resource or a combination of resources. The home
switch has a resource indirection table that can forward lock
requests to the current mobile lock manager.

The home switch uses two policies for lock manager
migration. The lock manager can detect temporal locality in
resource access for a single resource or a combination of
resources during run-time. The lock manager records tasks
that access the resource along with timestamps. A graph is
built in memory and when sufficient accesses are noticed, a
lock manager thread is migrated to an equidistant mobile lock
manager NAD. Also, gang scheduled processes can proac-
tively request an equidistant mobile NAD to process lock
requests that exhibit temporal locality. A flowchart for opera-
tion of this policy is shown in FIG. 6(b).

In the second policy, a set of processes can create a lock
manager thread for a single resource or a combination of
resources. This may be programmer defined at compile-time.
The programmer preferably uses an APl and middleware
layer to instantiate a lock manager thread that can minimize
latency by equidistant location positioning. Similarly, com-
piler support can be used to specify locations where lock
manager instances can be placed to increase network utiliza-
tion. The compiler can extract this information from the pro-
gram or a programmer can specify “hints” to the compiler. A
flowchart for operation of this policy is shown in FIG. 6(a).

For example, hop count or latency may be used as a metric
for placement of the mobile lock manager NAD. Congestion
and reliability can also be used as metrics for placement of the
mobile lock manager thread. The home lock manager may
use global information regarding reliable and congested links
to make this decision.

Itwill be understood that the present invention is supported
for the “direct” network of FIG. 1, where a switch is present

US 9,141,437 B2

11

in every node. Here a NAD can be attached to the switch 166
of FIG. 2. In the “indirect” network of FIG. 5, the switch
attached to the home node or owner of the resource is the
home switch. A NAD is attached to the home switch to offload
lock requests from the owner compute node. In an indirect
network, switches may be attached to other switches without
connecting to other compute nodes. In this case, NADs can be
attached to the aforementioned switch types also with lock
manager instances migrating to these NADs as well.

In this embodiment of the invention, an owner node has the
resource. With reference to FIG. 4, all clients have a resource
indirection table 402, which includes informative for
resource id to switch id mapping i.e. tells the client, which
switch or NAD it must contact to request access to a particular
resource. This table may include or identify a resource id
4024, a home switch address/id 4025, and a mobile switch
address/id 402¢. The home switch attached to the owner node
has a NAD with resource mapping table 404. This table may
include or identity a resource id 404a, the current resource
owner 4045 and the resource manager location 404¢. The
home switch may also have a linked list 4044 of waiting nodes
(last N requests, where N can be set by the application user).

Requests from clients are acknowledged by the resource
manager attached to the home switch. These requesters know
the new switch location where the instance of the resource
manager newly resides by way of the acknowledgement. A
client requester can cancel a request if it so wishes. Resources
with resource manager in the process of migrating have their
locations in the “home switch” with a blank entry.

FIG. 5 illustrates an example of migratory locks. FIG. 5§
shows a set of nodes P1, P2, P3 and P4, and a set of switches
S1, 82, S3, S4 and S5. In this example, S5 is the home switch
for a particular resource, and nodes P2, P3 and P4 request
access to that resource. The lock management function for
that resource is moved to the NAD attached to the switch
having the minimum total distance (as measured by an appro-
priate metric, in this case hop count) to those requesting nodes
P2, P3 and P4. As shown in FIG. 5, in this example, switches
S1, S2 and S3 have, respectively, total distances from the
requesting nodes of 13, 13 and 10; and switches S4 and S5
have total distances from these requesting nodes of 11 and 15
respectively. Accordingly, lock management for the
requested resource is moved from S5 to the NAD attached to
S3 as it has the lowest aggregate hop count.

This example uses aggregation of latency on hops as a
metric to measure distances between node and the NAD to
which the lock is migrated. Other metrics such as average or
mean latency or hop count from the requesting clients to each
candidate node/switch could be used. Also, weighted hops
could be used. This metric would favor tasks with higher
priority. Switch node metrics may be considered where the
task with high priority has the lowest hop count. The weighted
average of each path from the requesters to each candidate
node could also be used as a metric. It will be understood that
the latency or distance in “hops” from a requesting client to
each candidate switch is the shortest path from the requester
to each candidate switch of FIG. 5.

Other metrics that may be used for lock migration may be
based on the reliability of links (appropriate weights may be
given for links to reflect the congested state of the network or
their relative reliability). In addition, it should be noted that
the present invention may be practiced where a switch is not
necessarily attached to each node, i.e., a node is simply a
processor but may be connected to a network where switches
are connected to each other. This is an indirect network. The

5

10

20

25

30

35

40

45

55

60

65

12

lock manager cold be moved to a switch and this switch could
be connected to other switches and not necessarily other
processor nodes.

FIG. 6(a) shows a flowchart for compile-time specification
of'resource migration. At step 602, nodes execute instructions
and encounter a request to migrate a lock manager to a par-
ticular NAD or switch address/id. A node first checks if the
lock manager is at the compile-time specified location at step
603. If yes, the node simply issues lock requests to this loca-
tion at step 604. This means that another node encountered the
migration request earlier and already completed the migra-
tion. If a node is first to reach the explicit migration request,
at step 603, it does not find the lock manager at the compile-
time specified location. At step 605, it issues a request to the
home NAD for a lock and also explicitly requests migration of
the lock manager using client table 402 and the compile-time
specified location. Execution then transfers control to step
602.

FIG. 6(b) shows a flowchart for run-time detection of
resource migration. At step 611, nodes make lock requests for
a particular resource using client resource indirection table
402. At step 612, home NAD lock manager stores lock
requests from various nodes in resource mapping table 404.
At step 613, if the home NAD lock manager detects locality,
it moves an instance of the lock manager to handle lock
requests for a particular resource to a new mobile NAD loca-
tion. All requesting nodes are informed of this location
change so that they can update client resource tables 402. If
locality is not detected at step 613, migration is not performed
and the home NAD continues processing lock requests at step
614.

A second embodiment of the invention provides a method
and system to reduce lock latency and network traffic by
migrating lock managers to coupling facility locations closest
to nodes seeking resource access. FIG. 7 illustrates a comput-
ing network using this embodiment of the invention.

More specifically, FIG. 7 depicts a computer network 500,
which includes two data centers 702 and 704, which for
example, may be in Los Angeles and New York respectively.
Data center 702 includes a group of computer systems or
complexes 706 coupled to coupling facility CF A, and data
center 704 includes a group of computer systems or com-
plexes 710 coupled to a coupling facility CF B. For example,
each of the computer systems 706 and 710 may run an
instance of the zZ/OS Operating System offered by Interna-
tional Business Machines Corporation, Armonk, N.Y. In gen-
eral, though, computers of any suitable architecture can be
used as computer systems or complexes 706 and 710. Each of
the computer systems 706 and 710 operates to execute one or
more processes that may share data and resources with one or
more of the other computer systems. The sharing of data and
resources by two or more processes is carried out through
operation of the coupling facilities CF A and CF B.

A CF-to-CF connection 716 (e.g., a peer connection), such
as an Intersystem Channel (ISC) link, couples the two cou-
pling facilities. The peer ISC link can transmit both primary
message commands and secondary message commands in
either direction. This may be physically represented by either
two unidirectional links, one with a sender channel on the
primary coupling facility and a receiver channel on the sec-
ondary coupling facility, and the second link oppositely con-
figured. This may also be represented by a single physical link
where the channel interface in each coupling facility supports
both sender and receiver functionality. This latter capability
exists in ISC3 links and their variants: ICB3 and 1C3, all of
which are offered by International Business Machines Cor-
poration, Armonk, N.Y.

US 9,141,437 B2

13

The peer ISC link between the coupling facilities is used,
for instance, to exchange message path commands on the
primary message command interface to configure and couple
the two coupling facilities. Once configured and coupled, the
peer ISC link is also used to send secondary commands of the
list-notification type to exchange signals as part of a signaling
protocol for duplexed command execution. The sending and
receiving of these secondary commands is managed by a
coupling facility component called a signaling protocol
engine.

In the operation of network 500, machines 506 and 510 can
access shared distributed resources by gaining access to
resource locks stored in coupling facilities CF A and CF B. If
machines in the NY datacenter 504 need access to a resource
in the LA datacenter 502, then those NY machines will access
a lock stored in CF A across the cross-country link. This
causes network traffic across the cross-country link and in the
LA datacenter. In accordance with an embodiment of the
invention, lock latency and network traffic is reduced by
migrating lock managers to coupling facility locations closest
to nodes seeking resource access.

For instance, if systems 710 in NY need to access a
resource in LA, those NY systems would seek the lock stored
in CF A. This causes excessive lock latency and higher net-
work link bandwidth. With an embodiment of the invention, a
thread in the lock manager is migrated to the New York
datacenter. The systems 710 in New York can then access the
lock manager thread in CF B. This is possible because only
systems in the NY datacenter seek access to the resource in
LA datacenter 702. This reduces lock latency and reduces
bandwidth over the cross-country link and in the LA data-
center. If systems in LA seek access to the same resource, then
“weights” and “priorities” can be used to determine the data-
center where the lock manager instance or thread should be
run as shown in FIG. 5. The location of the lock manager
thread would be optimized to cumulatively enhance the lock
access performance of datacenter NY 704 and datacenter LA
702 simultaneously.

As will be readily apparent to those skilled in the art, the
present invention, or aspects of the invention, can be realized
in hardware, software, or a combination of hardware and
software. Any kind of computer/server system(s)—or other
apparatus adapted for carrying out methods described
herein—is suited. A typical combination of hardware and
software could be a general-purpose computer system with a
computer program that, when loaded and executed, carries
out the respective methods described herein. Alternatively, a
specific use computer, containing specialized hardware for
carrying out one or more of the functional tasks of the inven-
tion, could be utilized.

The present invention, or aspects of the invention, can also
be embodied in a computer program product, which com-
prises all the respective features enabling the implementation
of the methods described herein, and which—when loaded in
a computer system—is able to carry out these methods. Com-
puter program, software program, program, or software, in
the present context mean any expression, in any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per-
form a particular function either directly or after either or both
of the following: (a) conversion to another language, code or
notation; and/or (b) reproduction in a difterent material form.

While it is apparent that the invention herein disclosed is
well calculated to fulfill the objects stated above, it will be
appreciated that numerous modifications and embodiments
may be devised by those skilled in the art, and it is intended

—_
<

15

20

25

30

35

40

45

50

55

60

65

14

that the appended claims cover all such modifications and
embodiments as fall within the true spirit and scope of the
present invention.

What is claimed is:

1. A method of migrating network resources to improve
network utilization, for use in a multi-node network wherein
nodes of the network share network resources, the method
comprising the steps of:

identifying a group of nodes that share one of the network

resources;
for each of a plurality of the nodes of the multi-node net-
work, determining an associated aggregate access
latency time, based on at least one defined access latency
metric, indicating an aggregate latency time for requests
from the nodes of said group of nodes, in aggregate, to
reach said each node of said plurality of nodes;

identifying one of the nodes from the multi-node network
based on said aggregate access latency times;

moving said shared resource to a location in the network

based on the identified one of the nodes; and after mov-
ing said shared resource to said location, directing
requests from said group of nodes for the shared
resource to the identified one of the nodes to reduce
overall aggregate access latency time for said requests
from said group of nodes to reach the shared resource.

2. A method according to claim 1, wherein the moving step
includes the steps of:

moving said shared resource from a home node to said

identified one of the nodes; and

said home node forwarding requests for the shared

resource to said identified one of the nodes.

3. A method according to claim 2, wherein the step of
moving the shared resource from the home node includes the
steps of:

said home node keeping track of the number of accesses to

said shared resource;

when the shared resource is accessed a given number of

times, the home node moving said shared resource to
said identified one of the nodes;

providing each of the client nodes with a resource indirec-

tion table including information to identify the switch or
NAD to contact to request a particular resource; and
providing the home node with a resource mapping table to
identify a resource id, the current resource owner, the
resource manager location and list of requesting nodes.
4. A method according to claim 2, wherein the step of
moving said shared resource from the home node includes the
step of using said home node to move the shared resource to
said identified one of the nodes.
5. A method according to claim 1, wherein said defined
metric is based on sum of node hop counts from the group of
nodes that share the resources to other nodes in the network.
6. A method according to claim 1, wherein said resource
migration is based on one of (i) being specified explicitly at
compile-time by a programmer or software compiler of the
system and (ii) during run-time by implicitly detecting spatial
and temporal locality in resource access for a single resource
or a combination of resources.
7. A method according to claim 1, wherein:
the group of nodes are a first group of computers located in
a first datacenter;

said first group of computers access resources owned by a
second group of computers located in a second data-
center; and

the shared resource is a lock manager that manages access

to the resources of the second group of computers; and

US 9,141,437 B2

15

the moving step includes the step of moving the lock man-

ager from the second datacenter to the first datacenter.

8. A method according to claim 7, wherein:

the first group of computers are connected together by a

first coupling facility;

the second group of computers are connected together by a

second coupling facility; and

the moving step includes the step of moving the lock man-

ager from the second coupling facility to the first cou-
pling facility.
9. A method according to claim 8, wherein the first group of
computers access the lock manager on the first coupling facil-
ity for access to the resources of the second group of comput-
ers in the second datacenter, and the lock manager is moved
from the second datacenter to the first datacenter if the only
requestors of the lock manager are computers in the first
datacenter.
10. A system for migrating network resources to improve
network utilization, for use in a multi-node network wherein
nodes of the network share network resources, the system
comprising:
one or more processing units configured for (i) identifying
a group of nodes that share one of the network resources,
(ii) for each of a plurality of the nodes of the multi-node
network, determining an associated aggregate access
latency time, based on at least one defined access latency
metric, indicating an aggregate latency time for requests
from the nodes of said group of nodes, in aggregate, to
reach said each node of said plurality of nodes; (iii)
identifying one of the nodes based on said aggregate
access latency times, and (iv) moving said shared
resource to the identified one of the nodes, and (v) after
moving said shared resource to said location, directing
requests from said group of nodes for the shared
resource to the identified one of the nodes to reduce
overall aggregate access latency time for said requests
from said group of nodes to reach the shared resource.
11. A system according to claim 10, wherein:
said moving is done by moving said shared resource from
a home node to said identified one of the nodes; and

said one or more processor units are further configured for
forwarding requests for the shared resource from the
home node to said identified one of the nodes.

12. A system according to claim 11, wherein said one or
more processor units are further configured for keeping track
ofthe number of accesses to said shared resource at the home
node; and when the shared resource is accessed a given num-
ber of times at the home node, moving said shared resource to
said identified one of the nodes.

13. A system according to claim 10, wherein:

the group of nodes are a first group of computers located in

a first datacenter;

said first group of computers are connected together by a

first coupling facility at the first datacenter;

said first group of computers access a second group of

computers located in a second datacenter;

the second group of computers are connected together by a

second coupling facility at the second datacenter;

the shared resource is a lock manager that manages access

to other resources of the second group of computers; and

40

45

16

one or more processor units are further configured for
moving the lock manager from the second coupling
facility to the first coupling facility.

14. An article of manufacture comprising a program stor-
age device readable by computer, tangibly embodying a pro-
gram of instructions executable by the computer to perform
method steps for migrating network resources to improve
network utilization, for use in a multi-node network wherein
nodes of the network share network resources, the method
steps comprising:

identifying a group of nodes that share one of the network

resources;
for each of a plurality of the nodes of the multi-node net-
work, determining an associated aggregate access
latency time, based on at least one defined access latency
metric, indicating an aggregate latency time for requests
from the nodes of said group of nodes, in aggregate, to
reach said each node of said plurality of nodes;

identifying one of the nodes based on said access latency
times;

moving said shared resource to the identified one of the

nodes; and after moving said shared resource to said
location, directing requests from said group of nodes for
the shared resource to the identified one of the nodes to
reduce overall access latency time for said requests from
said group of nodes to reach the shared resource.

15. An article of manufacture according to claim 14,
wherein the moving step includes the steps of:

moving said shared resource from a home node to said

identified one of the nodes; and

said home node forwarding requests for the shared

resource to said identified one of the nodes.

16. An article of manufacture according to claim 14,
wherein said defined metric is based on the latency access to
the shared resources by said group of nodes.

17. An article of manufacture according to claim 14,
wherein said defined metric is based on temporal locality in
resource access for a single resource or a combination of
resources.

18. The method according to claim 1, wherein:

the determining includes, for each of said plurality of

nodes, determining an amount of time, based on said at
least one defined latency metric, needed for the requests
from each of the nodes of said group of nodes to access
reach said each of the nodes of said plurality of nodes,
and summing said amounts of time for the requests from
all of said nodes of said group of nodes to obtain an
associated total access latency time for said each node of
said plurality of nodes; and

said identifying includes identifying said one of the nodes

based on the associated total access latency times
obtained for said plurality of nodes.

19. The method according to claim 18, wherein said iden-
tifying includes identifying the one of the nodes having the
minimum of the associated total access latency times.

20. The method according to claim 1, wherein:

the aggregate access latency time is based on the distance

between each of the group of nodes and each of the
plurality of nodes, as measured according to a defined
distance metric.

